Post-Newtonian Hydrodynamic Equations Using the (3+1) Formalism in General Relativity

نویسندگان

  • Hideki Asada
  • Masaru Shibata
چکیده

Using the (3+1) formalism in general relativity, we perform the post-Newtonian(PN) approximation to clarify what sort of gauge condition is suitable for numerical analysis of coalescing compact binary neutron stars and gravitational waves from them. We adopt a kind of transverse gauge condition to determine the shift vector. On the other hand, for determination of the time slice, we adopt three slice conditions(conformal slice, maximal slice and harmonic slice) and discuss their properties. Using these conditions, the PN hydrodynamic equations are obtained up through the 2.5PN order including the quadrupole gravitational radiation reaction. In particular , we describe methods to solve the 2PN tensor potential which arises from the spatial 3-metric. It is found that the conformal slice seems appropriate for analysis of gravitational waves in the wave zone and the maximal slice will be useful for describing the equilibrium conngurations. The PN approximation in the (3+1) formalism will be also useful to perform numerical simulations using various slice conditions and, as a result, to provide an initial data for the nal merging phase of coalescing binary neutron stars which can be treated only by fully general relativistic simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A simple model for accretion disks in the post-Newtonian approximation

p { margin-bottom: 0.1in; direction: ltr; line-height: 120%; text-align: left; }a:link { } In this paper, the evolution of accretion disks in the post-Newtonian limit has been investigated. These disks are formed around gravitational compact objects such as black holes, neutron stars, or white dwarfs. Although most analytical researches have been conducted in this context in the framework o...

متن کامل

Post-newtonian Approximations and Equations of Motion of General Relativity

A post-Newtonian approximation scheme for general relativity is defined using the Arnowitt-Deser-Misner formalism. The scheme is applied to perfect fluids and point-mass systems. The two-body point-mass Hamiltonian is given explicitly up to the post2.5-Newtonian order.

متن کامل

Formulation for nonaxisymmetric uniformly rotating equilibrium configurations in the second post-Newtonian approximation of general relativity.

We present a formalism to obtain equilibrium configurations of uniformly rotating fluid in the second post-Newtonian approximation of general relativity. In our formalism, we need to solve 29 Poisson equations, but their source terms decrease rapidly enough at the external region of the matter(i.e., at worst O(r−4)). Hence these Poisson equations can be solved accurately as the boundary value p...

متن کامل

P. Rosenblatt

(SC)RMI: A (S)emi-(C)lassical (R)elativistic (M)otion (I)integrator, to model the orbits of space probes around the Earth and other planets Abstract Today, the motion of spacecrafts is still described according to the classical Newtonian equations plus the so-called relativistic corrections, computed with the required precision using the Post-(Post-) Newtonian formalism. The current approach, w...

متن کامل

New Methods for Approximating General Relativity in Numerical Simulations of Stellar Core Collapse

We review various approaches to approximating general relativistic effects in hydrodynamic simulations of stellar core collapse and post-bounce evolution. Different formulations of a modified Newtonian gravitational potential are presented. Such an effective relativistic potential can be used in an otherwise standard Newtonian hydrodynamic code. An alternative approximation of general relativit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007